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ABSTRACT 

The dynamic characteristics of a variable-mass, slender elastic body 

have been investigated. The mathematical model, simulating a solid-fuel 

rocket, comprises of a cylindrical elastic shell, open at one end and 

closed at the other end, subjected to internal gas flow due to fuel burn- 

ing. Most other investigators of the problem follow two major approaches. 

One approach regards the rocket as an elastic shell of constant mass with 

the burning of fuel effect in the form of a jet thrust applied at the 

open end. The other ignores the elasticity of the rocket but considers 

the mass variations. The unique feature of this work lies in the fact 

that it uses a more realistic mathematical model by considering simul- 

taneously the mass variation and both the axial and flexural elasticity 

of the boost vehicle. A distinct objective of this investigation is to 

examine the meaning of normal mode vibration for mass-varying systems. 

The investigation was initiated by the first author during his work as a 

Research Fellow in the Dynamic Loads Division, NASA, Langley Research Cen- 

ter in the summer of 1964. 

The motion of the vehicle is assumed to be planar and consisting of 

two rigid-body translations, one rigid-body rotation, one axial elastic 

displacement and one lateral elastic displacement. Since the interest lies 

in the dynamic characteristics of the vehicle rather than its absolute posi- 

tion in space, body axes and not inertial axes are used. The mathematical 

formulation is effected-by first deriving the differential equation of mo- 

tion in vector form for a mass-varying element of case and then combining 
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it with the vector differential equation of a fluid element. The latter 

is derived by using a noninertial control volume. This entirely novel ap- 

proach provides a large degree of mathematical rigor. A variational prin- 

ciple transforms the single vector equation into three scalar ordinary 

and two scalar partial differential equations with the associated boundary 

conditions. The five coupled equations of motion are highly nonlinear 

and, in addition, contain terms due to the internal gas flow. 

An investigation of the forcing functions resulting from the mass 

rate of flow, as reflected in terms due to internal pressure and velocity 

distributions, is undertaken and the effect of considering a noninertial 

control volume examined. Suitable approximations concerning the internal 

fluid flow are introduced and their validity verified. 

To study the dynamic characteristics of the boost vehicle, the case 

of the vertical, upright flight was solved. The closed form solution was 

effected by regarding the vertical rigid-body flight of the vehicle as a 

"primary motion." The remaining two rigid-body motions and two elastic 

displacements are considered as perturbations from the primary motion form- 

ing a "secondary motion." Although as a result of this assumption the 

equations of motion become linear, one should recall that they involve non- 

periodic time-dependent coefficients for which there is no general me*hod 

of solution. The partial differential equations are reduced to two coupled 

sets of ordinary differential equations with time-dependent coefficients 

by expanding the elastic displacements in series of eigenfunctions corres- 

ponding to the associated constant-mass system. Assuming that the mass 

distribution is uniform, although time-dependent, the set of equations for 

the axial motion becomes uncoupled and a solution can be obtained in terms 

of Eessel functions. By limiting the number of terms in both series, one 

can obtain a solution for the lateral motion by the method of Frobenius. 
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No such solutions are known to have been obtained before. Although in ef- 

fecting a solution, the eigenfunctions of the corresponding constant-mass 

system have been used, the elastic motion is by no means normal mode vibra- 

tion since both the frequency of oscillation and the amplitudes vary with 

time. Hence, one cannot speak of natural frequencies and normal modes, in 

an ordinary sense, and should regard the use of eigenfunctions strictly as 

a mathematical convenience with no particular physical significance attached. 

For no initial lateral displacement or velocity no lateral vibration is 

excited. 

As a ver ification of the assumpt ions necessary in a perturbation 

solution, a numerical solution for the coupled equations of motion is also 

obtained. The equations are written in finite difference form and are pro- 

grammed for solution on a digital computer by utilizing an iterative pro- 

cedure to cope with the nonlinearity of the equations. 

An excellent correlation between the two solutions is obtained, with 

the variation increasing slightly with time. The assumption of rectilinear, 

rigid-body translation is confirmed, as well as the lack of excitation 

for the lateral elastic motion. The effect of the fluid flowing through 

the case is sufficient to prevent rigid-body rotation, or tumbling, and 

only a very slight rigid-body drift normal to the line of flight is indi- 

cated. The internal pressure, acting in the axial direction on both ends, 

subjects the case to an axial tension which tends to stiffen the case and 

reduce the lateral v ibration, especia 1 ly at the forward end. 
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I. INTRODUCTION 

1.1 Statement of the Problem 

This investigation is concerned with the dynamic characteristics of 

a variable-mass body moving through space. The mathematical model, simu- 

lating a solid-fuel rocket, consists of a slender, elastic case closed 

at the end x = L and open through a nozzle at the end x = 0 (see Fig. 1.1). 

The products of combustion, treated as a gas flowing relative to the case, 

are expelled through the end x = 0. Of primary interest is the effect of 

mass variation and axial thrust upon the system stability as well as the 

question of existence of normal mode vibration for variable-mass systems. 

1.2 State of the Art 

Most research in the area of dynamic characteristics of a boost ve- 

hicle seems to concentrate on either a rigid-body of time-dependent mass 

or an elastic body of constant mass. In the latter some investigators al- 

low the mass to shift to simulate sloshing. 

The treatment of the missile as a rigid-body of time-dependent mass 

has been adequately covered by many writers, including Grubinl* and Dryer2 

among others, and by Leitmann3 and Meriam,4 who also consider the effect 

of a relative shift in the center of gravity of the body. The ballistic 

trajectories of spin- and fin-stabilized rigid bodies are treated in a 

publication by Davis, Follin, and Blitzer,5 and the effect of jet damping 

has been treated for both bodies of constant as well as variable mass by 

a number of investigators, including Gilmore and Keller,6 Barton,7s8 and 

Leon.9 All these authors, as well as a great many more, ignore the elas- 

ticity of the vehicle shell. 

* Numbers refer to publications listed in References 



On the other hand, a considerable amount of effort has been expended 

on the analysis of an elastic body subjected to longitudinal acceleration. 

SeidelO for instance, has treated the effect of both a compressive (thrust) 

force and a tensile force on the frequencies and mode shapes of lateral 

vibration of a continuous slender body. Silverbergll and Cox,12s1s among 

others, have investigated a missile as a lumped system. Others, such as 

Beal,l'+ have been concerned with the problem of buckling instabilities 

of a uniform beam subjected to an end thrust and the change in the natural 

frequencies of such a system. In contrast to the investigations mentioned 

earlier, however, these studies all neglect the change of mass of the 

body as a function of time. 

A series of reports by Miles, Young and Fowler15 offers a comprehen- 

sive treatment of a wide range of subjects including fuel sloshing. 

Again the mass variation is not accounted for. 

Attempts have been made to consider the mass variation and body 

elasticity simultaneously. In this connection one should mention Birnbaum16 

and Edelen17 who treated the variation of mass together with the flexural 

elasticity of the missile case. Unfortunately both investigators are 

rather vague in their treatment of the fluid flow problem. Neither of 

these two investigators attempts to include the axial elasticity of the 

missile shell, although its influence upon the system may be significant. 

Both are concerned with solid-fuel rockets and assume that the thrust is 

concentrated at the nozzle end, whereas any effect of internal pressure 

on the closed end is not clearly stated, such that a shell in axial com- 

pression rather than tension results. 

In later studies, the effect of both axial and lateral elasticity 

of a missile of time-dependent mass moving through space has been con- 

sidered by Meirovitch.la This work was further extended by utilizing 



a different formulation for the momentum of the internal fluid as well 

as a body axes system instead of inertial axes.1gs20 The work presented 

here gives a sumnary of the results obtained in References 19 and 20 and 

further numerical results not reported there. 

1.3 Description of the System and Assumptions -__~ 

The missile case is considered to be capable of both axial and 

flexural elastic deformation, as well as rigid-body motion. Whereas 

the mass per unit length of the case does change with time, it is as- 

sumed that the unburned fuel does not contribute to the strength of the 

missile case so that the axial and lateral stiffness remain unchanged 

with time. Simple beam theory is permitted by the assumption of a slen- 

der missile, together with small elastic deflections and by the exclusion 

of spin-stabilized missiles. 

Such influences as result from unstable burning and the effect of 

pressure and temperature gradients, as well as from acceleration forces 

on the burning rate and the inclusion of solids and burning particles in 

the internal fluid, are considered to have little effect on the dynamic 

characteristics of the missile itself and are not treated in the analysis. 

More vital to the behavior of the missile are the internal pressure and 

relative velocity distributions, as well as the effect of friction on 

the flow and the possibility of a gimbal angle at the nozzle; these fac- 

tors are treated in some detail. 

The purpose of this investigation is to study the dynamic characteris- 

tics of the missile rather than to calculate the exact position of the mis- 

sile at any time, so that body axes are used rather than inertial axes, 

with the result of a substantial reduction in the complexity of the final 
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equations of motion. 

Figure 1.1 represents the vehicle and the various systems of coor- 

dinates. 

Figure 1.1 

Body and Inertial Axes System 

The quantities that appear in Fig. 1.1 are defined as follows: 

X0' YO' zo - inertial axes 

x, Y, z - noninertial axes rotating with respect to the X0, Yo, Z. axes 

X,Y,Z - noninertial, body axes translating with respect to the X,Y,Z 

axes (hence, translating and rotating with respect to the X0. 

Yo, Z. axes) 

7 7 

1, J, K - unit vectors along the x,y,z axes (hence, also along the 

X,Y,Z axes) 

K - absolute position of the origin of the axes x,y,z 

r - position of a point on the rocket case relative to the axes 

X,Y,Z 
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- absolute position of a point on the rocket case 

- angular velocity of the axes x,y,z (hence, also of the axes 

x,y,z> 

where the bar above any symbol denotes a vector quantity. 

Additional assumptions are introduced as needed during the course 

of the investigation, These assumptions relate to the nature of the 

fluid flow and the order of magnitude of various factors resulting from 

the fluid flow as well as the relative magnitude of the rigid-body mo- 

tions and elastic displacements. 

1.4 General Discussion of the Present Investigation 

Sections II and III contain the mathematical formulation. The dif- 

ferential equations for the rigid-body motion and the elastic displace- 

ments as well as the boundary conditions for the latter are derived. The 

vector differential equations of motion of the missile shell and fluid 

elements are derived separately and then combined into a single vector 

equation of motion for a typical element. The equations for the shell 

and fluid elements are not independent, since the pressure of the fluid 

is transmitted to the case at both ends, as well as laterally along the 

missile. In addition, if friction is considered, a longitudinal force 

along the length of the missile is present. The vector differential 

equation of motion is transformed by a variational principle into five 

differential equations of motion in terms of the generalized coordinates. 

Whereas these equations are more amenable to solution than in vector 

form, they are coupled as well as highly nonlinear. In addition, the 

equations involve such fluid quantities, some of them in an implicit 

manner, as pressure and velocity distributions, mass flow rates, and 
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internal viscous effects. No closed form solution of the general case 

of motion is possible. For certain special cases, however, such as the 

upright vertical flight, a reasonable solution can be obtained. 

The internal fluid flow is investigated in Section IV and in parti- 

cular the effect of using a noninertial control volume. Relative,mag- 

nitudes of several fluid terms are considered in light of various assump- 

tions concerning the physical system, and a correlation between the total 

thrust in terms of the mass flow rate and in terms of the integrated in- 

ternal pressure is obtained. 

A primary motion in the vertical direction is postulated with the 

remaining motions treated as perturbations which, together with the as- 

sumption of small, elastic motions, results in linearized equations. 

The solutions for the axial and lateral deformations are obtained in 

the form of series of the eigenfunctions of the corresponding constant- 

mass systems multiplied by time-dependent generalized coordinates. 

Whereas the set of equations for the axial motion may be uncoupled by 

assuming uniform mass, the equations for the lateral motion remain coupled 

due to the presence of the axial force; this coupling can be removed by 

limiting the number of terms in the series. 

In Section VI, a numerical solution to the five coupled equations 

of motion is obtained. The equations are written in finite difference 

form and are programmed for the digital computer where an iterative pro- 

cedure is utilized to cope with the nonlinearity of the equations. 

Similar assumptions concerning the fluid flow are retained, and results 

for a representative system are computed and compared with those ob- 

tained by the more restrictive analysis of Section IV. The agreement 

is found to be excellent. 



II. MATHEMATICAL FORMULATION 

2.1 The Differential Equation of Motion for the Case Element 

An element of case is considered to consist of two parts: the case 

element and the fluid element. The element of case is treated as a "sys- 

tern," whereas.a "control volume" approach is adopted for the fluid element. 

Two vector differential equations of motion, one for the system and one 

for the control volume, are derived separately and later combined into 

one vector equation. 

A system may change shape, position and thermal condition but not 

the amount of matter. The differential equation of motion will be de- 

rived by using the system concept in conjunction with the force-linear 

momentum principle. To this end we consider the system at two instants, 

FRc(&$~ q~c+:y=gfk+A+~c 

C 

(a). System at Time t (b). System at Time = t + At 

Figure 2.1 

t and t t At (Fig. 2.1). Next let us define 

'EXC - case external force/unit length of case 

‘INC - case internal force/unit length of case 

'RC - force exerted by fluid on case/unit length of case 

mC - mass of case and unburned fuel/unit length of case 

absolute velocity of case element 
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5 - velocity of burned mass relative to case 

& - linear momentum/unit length of case 

The linear momentum at time t is 

(2.1) 

and at time t + At is 
. . 

i-c + A& = m&$ + AEc) + AmC($ t A$ t vc) (2.2) 

so that the change in momentum is 
. 

A& - 
L - 

= mCARC t AmC(ARC + vc) (2.3) 

According to Newton's second law, the sum of the forces acting upon 

the element must be equal to the rate of change of momentum 
- 

TExc + 71NC + TRc = lim 
APC _ .- dmC 

At + o XT - mc% + % dt (2.4) 

2.2 The Differential Equation of Motion for the Fluid Element. 

Reynold's Transport Theorem.21 

In contrast with the system approach, the control volume approach en- 

visions a definite volume in space which does not change. The boundary 

of that volume is called the control surface. The identity of the matter 

within the control volume may change but the shape must remain constant. 

Hence, we must assume that the elastic deformations of the case do not 

affect materially the dimensions of the control surface. 

In Fig. 2.2, the boundary of the control volume is represented by 

the heavy line and the velocity field by V(x,y,z,t) so that at time t 

the system is identical with the fluid within the control volume. The 
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x- 
system at time 

7. 
control volume--_. .& - 

l 

/ 
L -I/ II \ 

svstem I -Iii ------ 

t + At 

” - --.. 

at time t -? R .1f111 1 

-- .- 

- x 
Figure 2.2 

Control Volume 

linear momentum associated with an element of fluid is FPdv, where p is 

the mass per unit volume and dv is the element of volume. The linear 

momentum, pF, of the fluid contained by the control volume at any instant 

t is therefore 

At time t the system occupies regions I and II, while at time t + At 

it occupies regions II and III. The time rate of change of the linear 

momentum is 

dt At& At 

I/// Vpdv) 
= lim II 

t+At- WI *l/pdv)t 
+1 im t -I- At 

At& At At& At 

t 
At-d At (2.6) 
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As t + 0, the volume 11: tends to become the control volume so that 

cl/l i&dv) 
lim I1 t + At t 

At = &J,,,, bdv (2.7) 

Furthermore, as t -+ 0, the volume III approaches zero so that in the limit 

(hdv 1 > 
lim 111 t + At 

At = i-(pi- l d?i)III (2.8) 
At-d 

where dz is a vector representing an element of the control surface ARB 

and 7 is the velocity vector at that point. The right side of (2.8) 

represents the rate of efflux of pF through the area dx of the control 

surface ARB. A similar treatment of the integral over region I results 

in the efflux of momentum through the surface ALB. But the sum of the 

integrals over ARB and ALB is the integral over the control surface so 

that the time rate of change of the momentum becomes 

(2.9) 

Equation (2.9) is called the Reynold transport theorem for an iner- 

tial space and unifies the system and control volume concepts. Newton's 

second law of motion may once again be utilized to give 

d& 
FExF t FINF + FRF = dt = II,, $PV l diil + s J/1,, rpdv (2.10) 

- 
where FExF, 'INF' and FRF are the total external, internal, and reactive 

forces, respectively, acting on the volume of fluid. 

,If the control volume is not fixed in space but accelerating with 

respect to an inertial system X0, Yo, Z. (Fig. l.l), the equation of 

motion for an element of fluid is 

dFExF + dF INF + d'RF = $ (dMFkF) = dMFEF (2.11) 

10 



where dMF is the mass of the fluid element and $ is the absolute ac- 

celeration of the fluid. 

If the position vector of the fluid, RF is given in terms of a non- 

inertial system of axes, the absolute acceleration, EFS has the form 
-- -- 

iiF = titdre, t 2wxvre, + YixFt Wx (wxr) (2.12) 

where 

R = acceleration of the origin of the body axes x,y,z 

v rel' a rel = velocity and acceleration of fluid relative to x,y,z axes 

r = position vector of fluid element relative to the x,y,z axes 
- L 
w, ‘J.’ = angular velocity and acceleration of axes x,y,z 

. - 
Using the notation RCre, to distinguish between the velocity of the 

case relative to the x,y,z system and the velocity, 7, of the fluid rela- 

tive to the case, together with the corresponding relative accelerations 
ZL . 
RCre, and 7, respectively, Eq. (2.12) becomes 

. -- -- 
kF = E t (Ecre, + G) + 2;~ (jjcre, t V) t wxr + Wx (WxF) = EC + i + 2wXv 

(2.13) 

where 
2 zz I . -- -- 
RC = R + RCre, + 2wxRCre, t wxr t Ox (wxr) (2.14) 

is the absolute acceleration of the case element. 

Introducing (2.13) and (2.14) into (2.11) and integrating we obtain 

the time rate of change of the momentum for a noninertial control volume 

'EXF + 'INF + 'RF = J/J,, pFdMF = /jj,, EFpdu = 

. -- 
j]/,, (EC t Vt Pwxv) pdv = /&, (EC + 2=x3 bdv + 

(2.15) 
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Figure 2.3 

Fluid Element 

In view of the nature of the physical problem under consideration, 

the flow may be restricted to the one-dimensional case, since the lateral 

deflection of the shell is small. Furthermore, if the density and velo- 

city of the fluid are assumed uniform over a cross section of the missile, 

the change in any property of the fluid may be considered as a function 

of the 5 - coordinate only, where 5 is the axis passing through the cen- 

ters of the missile cross-sectional areas. 

For a small increment of fluid of length AC, Eq. (2.15) reduces to 
- - - 

AFEXF •t AFINF + AFRF = (EC t &ii3 AMF + (mFvj2 v2 - 

tmFVjl yl + Z& (AMF3 (2.16) 

where mF is the mass of the fluid per unit length. Dividing Eq. (2.16) 

by AC and letting At -f 0 we obtain 

lim tAt 1Nt 

A< 
Kt = lim (Kc + 2WxY) 

A <d AW 

lim 
(mFvJ2 v2 - (mFv) 1 vl A"F - 

AS-to A5 
t s (lim ag v) 

AEd 

I2 



Finally, the vector differential equation of motion for the fluid element 

reduces to 

‘EXF + ‘INF + 'RF = mF (EC t &x3 + & (mFva + -& crnFq ' 

- Ci> (2 

The terms denoted by the symbo 

the time rate of change of momentum 

. 17) 

n 

of 

1 A provide for an abrupt change i 

due to a change in the direction 

flow at 5 = si such as may result from a gimballing of the nozzle. The 
- 

terms fRF, TINF, and FExF represent the reactive force per unit length 

on the fluid, the fluid pressure differential per unit length and gra- 

vitational force, and the external force per unit length, respectively. 

In this manner, FEXF contains nonconservative forces only. 

2.3 The Combined Differential Equation of Motion in Vector Form _---. 

For small lateral deformation, the spatial variable 5 of the last 

section approaches the spatial variable x as defined in Section I. Eqs. 

(2.4) and (2.17) may then be combined to give the vector differential 

equation of motion for the differential element of the missile 

FExc + FINc + FRc + FExF + TINF + FRF = (mc + mF) EC + +vC + 
(2.18) 

IllF (2LX3 + -$y (lil,Va + $ (lTIFq + ii, A[mFV (Xi.‘) v (Xi.‘)] 6(X - Xi) 

However, by Newton's third law, the reactive force exerted on the case 

by the fluid is just the negative of the reactive force exerted on the 

fluid by the case. Also, the distributed internal force in the fluid is 

recognized as due to the pressure-area differential acting on the cross- 

sectional area as well as gravitational forces 

13 



'INF = - &- (pAF) i-t- m&Y (2.19) 

where p is assumed uniform across the cross section. Furthermore, letting 

m = mC + mF be the total mass per unit length, the combined differential 

equation for the missile element appears as 

FEx + FINC - & (PAF) Tt mFTJ 
LL 

= mRC + mCYc + mF (2Yx7) + 

(2.20) 

& tmFvg t s trnF$ t ii, "[mFv (XiSt) v ('i,t)] 6(X - Xi) 

where TEx = 'EXC + 'EXF is the distributed external force which includes 

the drag. Only nonconservative forces are included in FEx, so that both 

the gravitational forces as well as the internal stresses in the vehicle 

case are represented by 71NC. 

14 



II?. THE DIFFERENTIAL EQUATIONS, OF MOTION 1.N TERMS OF GENERALIZED 

COORDINATES 

3.1 The Variational Principle 

Whereas the vector differential equation of motion of an element of 

a solid-fuel missile provides a mathematical formulation of the physical 

system, it is not particularly amenable to mathematical solution. Equa- 

tions of motion in terms of generalized coordinates are more suitable 

for that purpose. A variational principle similar to Hamilton's principle 

is adopted as the most direct means of obtaining the equations of motion 

in terms of generalized coordinates. 

With planar motion assumed, the generalized coordinates are chosen 

as two rigid-body translations, X(t) and Y(t), one rigid-body rotation, 

e(t), one axial elastic displacement, u(x,t), and one lateral elastic 

displacement, y(x,t), as shown in Fig. 3.1. Since the only spatial 

Figure 3.1 

Coordinate System for Planar Motion 

coordinate relative to the body is x, the position of a point on the 

missile case is 

Rc = lx + (xtu) i + yT = (X + x + u) i + (Y + y) J (3.1) 

15 



where i and 5 are not constant, but rotating unit vectors. Also, since 

the motion is planar, the angular velocity of the body axes simplifies 

to 
- w = ‘k (3.2) 

where i? is a constant unit vector normal to the plane of motion. At this 

point it is convenient to disregard any abrupt changes in the time rate 

of change of the momentum of the flow other than that due to a gimbal 

angle of the nozzle. Therefore, the velocity of the fluid relative to 

the missile case at any point other than the nozzle end, x = 0, is 

V(x,t> = v(x,t) i (3.3) 

With the above restrictions, the element of the missile described 

by Eq. (2.20) may be put in dynamic equilibrium by the use of D'Alembert's 

principle 

QX,t) = TEx + FINC - & (pAF) T+ mFF - rn& - [mcvc t & (mFv2) t 

g (m,v)] T - 2emFvT - A[mFv(o,t) v (o,t)] 6(X) = 0 
(3.4) 

The virtual work associated with the combined element of the rocket is 

then 

i(x,t) = F(x,t) l GRc(x,t) (3.5) 

where GT$.(x,t) is an arbitrary variation of ?$(x,t) such that 6Kc(x,t) 

must vanish at t = to and t = tl. Since 6T= 6eJand ST= -6e7, the 

virtual displacement may be expressed as 

$(x;t) = [6X + 6U - ae(Y + y)] i + [6Y + ay + se(x t x + u)] J (3.6) 

The statement of the variational principle is 

t1 L . 
lto lo dW(x,t) dx dt = 0 (3.7) 
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3.2 The Equations of Motion. General Expressions 

To derive the equations of motion in terms of generalized coordinates, 

we consider the various terms comprising &I = P l 6Kc separately. First 

we consider the term due to external forces 

'EX ' "Kc = 6inc (3.8) 
A 

where 6W,, denotes the nonconservative work density. The virtual work 

resulting from the internal forces corresponds to the negative value of 

the variation in the potential energy density p^E 

FINc . "Kc = - 6<E (3.9) 

The terms due to the fluid axial force and fluid gravity are 

ll - & (pAF) T+ mF4]. "Kc = 66 (3.10) 

Noting that 

one can write 
. . 

- mKc l “i$ = aii + 6? 

where 

(3.11) 

(3.12) 

is the kinetic energy density and 

,. d L 6T = -m dt (RC l “Rcc, = (3.13) 

can be shown to represent a variation in the equivalent generalized dis- 

tributed forces due to mass time rate of change. Furthermore, one can 

write 

4 

. 
mCvC t -!& (mFv2) t & (mFv)] Tt 2emFv Jt 

A[mFv(ost) v(o,t)] 6(X)} l 6Rc = 6i 

(3.14) 
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A 

where 6V is a variation in the equivalent generalized distributed forces 

due to fluid flow. 

In view of the above definitions one can write 

,; bij nc+6P+6i+6V)dx=(FX+PX+TX+VX)6X+ 

(Fy + Py + TY + VY) aY + (Fe + P, + T, + '$)&I t 

L 
Jo (f, + iu + ?, + i,) 6u dx + I 

L 

0 Y 
(i t l;y + iy + Vy) 6y dx 

where the quantities in parantheses in the right side of Eq. (3.15) are 

recognized as corresponding generalized forces. 

Next define the Lagrangian density, L, in the form 

i = KhE - p^ (3.16) 

and it suffices, for the moment, to state that the functional dependence 

of the Lagrangian density can be written as 
. 

i = i(x, Y, 8, u, y, i, i, ;J, Ii, y, u', y', y") (3.17) 

from which it follows that 

(3.18) 

Note that primes indicate differentiations with respect to the spatial 

variable x. Introducing Eqs. (3.8) through (3.18) into Eq. (3.7), per- 

forming a number of integrations by parts and recalling the arbitrari- 

ness of the virtual displacements , we obtain the Lagrange equations of 

motion 
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- & ($1 + ++ Fx+ Px + TX + Vx = 0 

- !p$ ay y y y y = 0 tac+F +'P +.T. +V 

- k ($1 + %+ F, + P, + T, + V, = 0 (3.19) 

n ,. ,. 
-p$+yp,)+iu + iu t i, + iu = 0 

n A ,. A 
-$($) tt- k ($ ) t 3$,, t fy t py t iy t iy = 0 

where the latter two equations are subject to the boundary equations 

ai -1 au = 0 at x = 0,L (3.20) 

and 

aC =. 
ay’ 
aL 
-1 
ay 

-&($J =o 

at x = 0,L 

at x = 0,L 

(3.21) 

(3.22) 

3.3 The Equations of Motion. Specific Form 

The specific form of the nonconservative forces Fx, Fy and F, asso- 

ciated with the rigid motion and the nonconservative distributed forces 

F, and Fy appears evident from Eqs. (3.6), (3.8) and (3.15). Furthermore, 

from Eqs. (3.6), (3.10) and (3.15) one obtains 

Px = - 10 & (pAF) dx + !k mFF . Tdx 

(3.23) L 
Py = lo mFF l 3 dx 



(X -!- x + u) 5 l J]dx 

i, = - & (pAF) + yF!i l 7 

Py = mFt l 3 

which are equivalent generalized forces resulting from the fluid inter- 

nal pressure-area differential and the fluid gravity. 

Noting that 

d7 .T 
dt= eJ and - ;;i- 

the absolute velocity of a point on the missile case in terms of the 

generalized coordinates is 

kc =[i t; - (Y + y) A] 5 + [i + J; + (x + x + u) ;13j (3.24) 
. 

With M denoting the time rate of change of the total mass of the system 

one can use Eqs. (3.6), (3.13), (3.15) and (3.24), perform the necessary 

integration and conclude that 

TX = E;I (X - Y;) + IL *' 
L. 

mu dx - i I my dx 
0 0 

Ty = i (; + X;t, + IL m;dx+;, j 
L 

r; (x t u) dx 
0 0 

T, = i XY - Yi t &X2 t Y2( - JL (Y + y) - - m u dx 
0 

L . . . 'L . 
t lo (X + x + u) m y dx - (i - 2Ye) lo m y dx 

. 
t (Y f 2X;)/ 

L. L . 9. 
m(x + u) dx + i 1 m (x t u)~ t y2 dx 

0 0 1 - 

i(Y + y): 

?’ l 

Y 

= m -Y t y t e(X t x t u): 
-. .- 

(3.25) 



are the equivalent generalized forces due to the mass variation. 

If the flow at the nozzle (x=0) is deflected such that it makes an 

angle y with the x axis, 

$O,t) = v(O,t) (T cos y + 3 sin y) 

and the change in the time rate of change of momentum 0 

A I,mFV(O,t) $O,t)] = mFv2(0,t) [(l - cos y)s - (s 

Equations (3.6), (3.14), (3.15) and (3.27) lead us to 

(3.26) 

f the fluid is 

in ~131 (3.27) 

Lr. vx = - l(qyc t &(mFv2)t & (mFvqdx - mFv2(0,t)(l - cos y) 

vy=- - 
L 

28 lo mFv dx t mFv2(0,t) sin y 

r 
v, = J; (Y + Y) jcvc t $ (mFv2j+ $ (m,v) 

-1 
dx 

t 
i 
V + y(0,t$mFv2(0,t)(l - cos y) 

-1 
L 

- 2; Jo (X + x.+ u) mFv dx + mFv2(0,t) sin Y 

(3.28) 

vu = - + & (mFv2) + $f (mFv) 1 - mFv2(o,t)(l - cos y) 6(x) 

iy = - 2; mFv + mFv2(0,t) sin y6(x) 

Introducing Eq. (3.24)into (3.12) we obtain the kinetic energy density 

f$ = $ m([; + ; - e(y t y)12 + [; + 3; + e(X ’ X ’ “)I23 (3.29) 

and the potential energy density can be written in the form 

p^E = + EI(y”) [ 21 t + [En,(u')2] + + [p(yl)'] + mCg RC - 5' (3.30) 

in which the following symbols have been used 
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E - modulus of elasticity of the case material 

I - area moment of inertia of the case cross section about a 

transverse axis (neutral bending axis) 

AC - cross-sectional area of the case 

P - axial force in the case (positive for tension) 

mCg - gravitational force per unit length of case 

-1 J - unit vector along the Y. axis 

The Lagrangian density is obtained by introducing Eqs. (3.29) and (3.30) 

into (3.16). The Lagrangian L has the form 

L, 
L=/ Ldx (3.31) 

0 

Performing the indicated operations in the first of equations (3.19) 

yields 

-M(ji _ b;y _ 2;‘; _ &X) '- - Jkrn u dx t 6 jLo m y dx + 

‘2 L 
.L * 

,e 1 m(x + u) dx + 2ej m y dx - 
0 0 

f'['& (PAF) + 

mFv2) 
-1 a + ?& (m,v) dx - JL 

. 
i 0 mcvcdx - 

mFv2(o,t) (1 - cos Y) - Mg sin 0 + Fx = 0 (3.32) 

The scalar product of the unit vector 7 and Eq. (2.17) results in the 

expression 

'EXF l 

i t -fRF l i - & (pAF) 
z 

- mFg sin e - mFRC . 7 - kc mFv2) - 

g (mFv) - mFv2(0.t) (1 - cos y) s(x) = 0 (3.33) 

where Eq. (3.27) and the nature of TINC are recalled. A combination 

of Eq. (3.32) with (3.33) results in a simplified expression for the 
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motion of the case alone. 

-MC.(ji - & - 2& ; e2X) Y / 
1 

m- c dx + e I 
L 

0 c 
m y dx t 

0 c 

i2 / 
L 

m (x + u) dx + 2; 1 
L L 

0 c 
my dx - 1 (iRF . Tt mcYc) dx - 

oc 0 

MCg sin 8 + Fxc = 0 (3.34) 

where MC is the total mass of the missile case at any time, F xc is the 

generalized force associated with the coordinate X due to external forces 

acting on the case only, and the terms due to the fluid pressure are rep- 

resented in the integral 

- !b (fRF * i) dx = ,k (TRC . i) dx. 

In a similar manner, the equation of motion corresponding to the Y 

coordinate is 

-MC(i + 2;7X t eX - ;'Y) - IL m i dx - e IL m (xt 
0 c 0 c 

u) dx 

t;2 JL omCydx- 2; JL m u dx o c - MC g cos e 

- 3 dx + Fyc = 0 

and the equation for the e coordinate is 

- (ey t 3x - i t 2;1Y) IL m y dx +(-ix t e2V - y - 26X) l 

0 c 

IL m (x + u) dx + Y Fxc - XFvc - 
. . 

0 c 
IL m (Ax + 4 

0 c- 
-y;;dx -1 

- 

(3.35) 

- ii.fL mC (x + u)2 + y 2l dx - 2; JL m 
. 

0 L - 
o c I-(x + u) u t yy;dx 
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L. 
- j m g L i-s ,(x + u) cos e - y sin 0 dx + / I (m v + TRF * 7) y 

oc : 1 ()I- cc 

- RR, * z) (x + u): dx + Fee = 0 (3.36) 
-I 

The final two equations of motion corresponding to the coordinates u 

and y are obtained in an identical fashion. 

$ (EACum) - mC -ji + ii - 'e'(Y + y) 
1. 

1 
- 2&Y t ;, - 2(X t x t u)’ 

. 
- mcvc dRF * T- mCg sin 0 + ^FuC = 0 

and 

- g2 (E I y") + & (PY') t i t S(X t X + U) + 2e(i + I;) 

A 
- i2(v t Y,i - FRF ' 3 - mCg Cos et Fyc = 0 - 

(3.37) 

(3.36) 

where the latter two equations are subject, respectively, to the boundary 

conditions 

and 

EAC u' = 0 at x = 0,L 

EI y” = 0 at x = 0,L 

-P y' + & (EI y") = 0 at x = 0,L 

(3.39) 

(3.40) 

(3.41) 

The five equations of motion are coupled and, in addition, highly 

nonlinear so that no solution in closed form exists. Furthermore, the 

evaluation of the reactive force due to the internal fluid flow is not 

yet completely defined since its determinatton requires additional infor- 

mation concerning the mass flow rate as a function of time,together with 

the pressure and velocity distributions throughout the missile. Also ap- 

pearing in the equations of motion are quantities, some of them in an im- 

plicit manner, such as the physical shape, stiffness and density of the 

shell, nozzle configuration and flow characteristics, as well as drag 

and internal viscous forces. 

24 



IV. THE INTERNAL FLUID FLOW 

4.1 nternal- P.ressure and Velocity Distribution 

The formulation of an exact mathematical model treating the extremely 

complex physical conditions occurring within a solid-fuel missile is diffi- 

cult in itself, and beyond the scope of this investigation. For instance, 

most of the double base solid propellants commonly in present use are sus- 

ceptible to a variation in the burning rate with changes in both pressure 

and temperature as well as to the inertial stresses resulting from flight. 

Coupled with the variation of the burning rate of acoustic origin, these 

effects may become significant to such a degree as to cause unstable burning 

or "chuffing." Additional complexity arises in the consideration of the 

combustion process itself, such that a rigorous formulation would include 

the possibility of burning particles or other solids in the internal fluid. 

In the present investigation, the missile is regarded as a cylindrical 

container of uniform cross section, closed at the end x = L, but open 

through a completely expanding nozzle at the end x = 0. Also, the length 

of the nozzle is considered relatively short compared to the total length 

of the rocket. The propellant is assumed to be bonded to the missile 

shell such that mass per unit length and the internal flow area vary with 

time. In view of the low elastic modulus (1 to 7 l lo3 psi)22 for most 

propellants, together with the complicating fact that the elastic modulus is 

nonlinear for even low stress levels, the stiffness of the missile does 

not include the stiffness due to the propellant and thus remains constant 

with time. 

Since the forward end of the missile is closed, the products of com- 

bustion must flow in the negative x - direction such that at any point 

22 R. N. Wimpress, p. 80. 
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x, the flow rate is equal to the total rate of cha,nge of mass between the 

point x and the closed end. This quanti 

from the continuity equation of fluids 

iC(x,t) = / 
L. 

m (E, t) d 
x c 

ty is denoted as l$(x,t), and 

5 (4.1) 

where 5 is a dummy variable of integration. 

If the burning rate is assumed independent of temperature and pres- 

sure, the rate of change of mass per unit length of the missile is inde- 

pendent of the spatial coordinate x such that 

m&t) = m,(t) (4.2) 

Furthermore, the missile will remain uniform in cross section and the 

center of mass of the system will not shift with respect to the x axis. 

In addition to the consideration of the burning rate as a function of 

the spatial coordinate, an assumption must be made concerning the mass 

flow rate as a function of time. This rate is largely determined by the 

grain configuration, together with the use and position of burning inhi- 

bitors as well as other less important conditions. The simple cylindrical 

grain shape treated in the present investigation results in approximately 

"neutral burning"22 while various cruciform, multiple grain, or end burning 

forms may be designed to yield either "progressive" or "regressive" burning 

characteristics. Typical mass-flow rates amenable to analytical treatment 

may be approximated as shown in Fig. 4.1 by a rectangular function or 

slightly more accurately by a trapezoidal function.3 

3 G. Leitmann, p. 142 
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Figure 4.1 

Actual and Approximated Mass Flow Rate 

A common assumption is that the temperature and pressure in the com- 

bustion chamber are uniford2and the flow is frictionless, so that the 

density of the fluid p is constant. Since the flow area AF is constant 

with respect to x (although not with respect to time), the fluid mass per 

unit length, mF = pAF, is constant, and a linear relative velocity dis- 

tribution results from Equation ( 4.1 ). This assumption of uniform cham- 

ber pressure must be further justified for high accelerations, however, 

since it neglects the effects of a change of pressure due to flow accelera- 

tion and friction and due to the fact that the control volume is accelera- 

ting with respect to the inertial axes. 

Equation (3.33), for frictionless, steady-state flow with constant 

area and zero engine gimballing angle, reduces to 

_ i!P = & (p~2) t p(i$ l it g sin e) 

ax (4.3) 

With EC assumed to be known, the above equation contains three unknowns: 

P, P, and v. However, additional equations are available in the form of 

22 Wimpress, p. 42 
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MC(x,t) = pAFv(x,t) (4.4) 

together with the equation of state for a perfect gas 

p = PRT (4.5) 

which, with the assumption that the gas constant R is known, introduces 

the absolute temperature T as a new unknown. Consistent with the assump- 

tion of a perfect gas are the relations 

cP - cv = 
R (4.6) 

and 

y = c /c 
P v (4.7) 

where c and cv are the specific heats at constant pressure and volume, 
P 

respectively, and y is the ratio of the two. Finally, these relations 

are supplemented by the heat-energy relations 

hdv2=h 
2 L (4.8) 

and 

h - h, = cpT (4.9) 

where h is the enthalpy at any point, hL is the enthalpy at the forward 

end of the missile, and hr is a reference enthalpy which may be assumed 

zero. Substitution of Eqs. (4.4) and (4.9) into Eq. (4.8) yields 

v2 + 
~PAFC 

- 2cpTL = 0 (4.10) 

R+t) 

from which a value for v may be obtained. If this value of v is in turn 

introduced into the integral form of Eq. (4.3), the result is an expres- 

sion which, with the exception of p in the integral, is in terms of known 

quantities only 
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I 

4 
l Tt g sin e) dg (4.11) 

A similar substitution for p in the above equation results in an 

equation that relates the pressure at any point in the chamber to the 

pressure at the forward end in terms of known quantities. However, the 

evaluation of the integral is impractical. If the integral is neglected 

for the moment, Eq. (4.11) simplifies to 

E = -$ * -$ 1 t (y - I)(~ + l)(l - 2c T i (x,t)/A; P:) 2 1 
?- 

pL PLC 
(4.12) 

which agress with Price23 who has plotted p/p, as a function of 

i$(x,t)/& where f$, is the mass rate of flow at sonic velocity in the 

An indication of the order of magnitude of the integral term re- 

sulting from the acceleration of the control volume may now be obtained. 

Since p/p, is nearly constant, p/pL is likewise. Furthermore, the effect 

of gravity compared to EC is small for a vehicle under high acceleration. 
. . . 

In addition, if the motion is assumed to be simp le translat ion,e = e 
z 

= 0, and RC . 7 = i t G. But u is sign variable and may be ignored over 

the total length of the missile. Depending on the drag, burning rate, 

and nozzle configuration, a typical solid-fuel missile may exhibit a linear 

-2 
acceleration of the order of 5,000 ft set , so that the change in pressure 

resulting from the noninertial term is 

combustion chamber. An examination of Price's results indicates that 

for a Mach number of 0.4 or less, such as exists in most physical systems, 

the maximum change in p/p, is approximately 5 per cent due to the flow 

acceleration. 

L 
Ap = / p i dg = 9 psi 

0 
(4.13) 

23 E. W. Price, p. 63 



for each 100 inches of combustion-chamber length. For a missile 100 

inches in length with a chamber pressure of 2,000 psi, this amounts to 

only 0.45 per cent of the pressure change due to flow acceleration and, 

hence, may be neglected. Also, this is a pressure increase rather than 

a pressure decrease in the negative x-direction, and as such, tends to 

render the chamber pressure more uniform. 

The magnitude of the friction term FExF may be estimated by assuming 

a value for the friction factor, f = 0.005 (see Wimpress, p. 33), and 

again using the assumption of nearly constant internal fluid density. 

With z denoting the perimeter of the flow area, the pressure drop due to 

friction for a lo-inch-diameter missile with the above chamber pressure 

is 

AP - dg = 3.3 psi 

for each 100 inches of chamber length, which is once again negligible. 

Thus, even for a body under high acceleration, the assumption of a 

constant chamber pressure, together with the resulting linear velocity 

distribution, appears quite reasonable insofar as the dynamic characteris- 

tics of the missile are concerned, and this assumption is used for the 

remainder of the investigation. 

4.2 Determination of the Forcing Function 

In order to evaluate the forcing function resulting from the inter- 

nal pressure and mass flow, it is necessary to determine the value of the 
. - 

expressions involving fRF and mCvC in the equations of motion, Eqs. (3.34) 

through (3.38). If the propellant merely burns or ablates at the surface 

such that the mass has essentially no component of axial velocity relative 



to the case before it enters the control volume, the mcvC terms are negli- 

gible, and the thrust is determined from the evaluation of the integral 

L 

lo ('RF . n dx = i,' p (2) dx = 1; pdAF (4.15) 

where the reactive distributed force is determined as indicated in Fig. 

4.2. 

'EXF 

Figure 4.2 

Forces on Fluid Element 

With the exception of the nozzle and the forward end of the missile, the 

flow area is constant for vehicles of uniform cross section, so that 

dAF = 0. If the length of the nozzle is small compared with the length 

of the missile, any net reactive force at the nozzle may be considered to 

act at x = 0. However, in order to evaluate the pdAF term of Eq. (4.15) 

it is necessary to know the pressure as a function of the spatial coordi- 

nate, x, which will vary with nozzle configuration. For the purposes of 

this investigation, the assumption of a linear pressure drop through the 

nozzle with sonic flow at the throat is considered adequate, such that 

IL pdAF = pLAFG(L)- (PN 2 pT)(AN - AT) 6(o) (4.16) 
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where the subscripts correspond to the notation of Fig. 4,3. 

0 TN Figure 4.3 

Axial Position Locations 

Since the sonic pressure is known in terms of the chamber pressure, the 

reactive force resulting from the internal fluid is 

/; (‘RF l 3 dx = pLAF S(L) - 0.236 pNAF (l-AT/AF) 6(O) (4.17) 
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V. THE VERTICAL, UPRIGHT FLIGHT. CLOSED FORM SOLUTI‘ON ~~ .--- 

5.1 Rigid-Body Motion 

Although the reactive force of the internal fluid is now tractable to 

calculation due to the assumptions of the previous section, the equations 

of motion remain highly nonlinear and coupled. To add to the complexity, 

the mass distribution is time-dependent so that a closed form solution of. 

the equations in the present form is not possible. 

Whereas an entirely numerical solution of the equations is obtainable, 

and is in fact accomplished in the subsequent section, such a solution of- 

ten tends to obscure significant dynamic characteristics since it is valid 

only for a given set of physical parameters and initial conditions. Also, 

in the event that an instability is indicated, the question arises as to 

whether it is the physical system or merely the mathematical representation 

that is unstable. In any event, generalizations are difficult to ascertain, 

and since the purpose of this investigation is to study the dynamic char- 

acteristics of a solid-fuel missile, an analytical treatment is highly de- 

sirable, even under simplifying assumptions. 

The flight of many sounding rockets consists of vertical, upright 

flight, and in order to study this case in more detail, the "primary 

motion" is defined as the vertical rigid-body flight of the vehicle. The 

deviations from the primary motion form "secondary motions" and are re- 

garded as small perturbations from the primary motion. Since the missile 

is assumed initially uniform and since the mass is dissipated uniformly, 

the center of mass remains stationary relative to the vehicle shell at 

the mid-way point between the ends of the missile. In the subsequent 

material it is convenient to measure x from the center of the missile 

such that X(t) and Y(t) are the coordinates of the center of mass. 
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Figure 5.1 

Vertical, Upright Flight 

Equations (3.34) through (3.35) are considerably simplified by the assump- 

tion that X >> Y, X >> 8 and 8 = H, so that second and higher order terms 

in Y and e are ignored. Since the choice of the origin at the center of 

mass leads to j'\[F2 C m x dx = 0, the above three equations reduce to 

. . 
- MCX - 

L/2 ~ L/2 
I -L/2 mCU dx -I -L,2 (FRF l i + mCvC)dx - MCg + FxC = 0 (5.1) 

-M&i; + 
L/2 

2ij( + ix) - /-L,2 mci dx - ;I\[72 mp dx 

- 2; 
L/2 . L/2 

I- mudx-/ 
L/2 c -L/2 'RF ' j- dx + Fyc = 0 (5.2) 

L/2 L/2 7 
i/ 

L/2 
-L/2 mCY dx 

- (ix t Y t 2ii) j-L,2 mCu dx r J-L,2 mC i(x+u)-yi dx 
- 

. . L/2 
- e /-L,2 mC (x + uj2 + y2 

C 1 . L/2 

[I 
. . 

dx - 28 /-L,2 mC (x + u> U + YY 1 dx 

L/2 
+I -L,2 [(fRF.’ + icvc)y - TRF . 3 (X + u)] dx + j’:F2 mCg Y dx 

+ YFxc - xFYc +F ec =o (5.3) 
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Equations (5.1) through (5.3) are further simpliffed by consideration 

of the fact that the average elastic motion, even when multiplied by a 

weighting function, is zero. This, combined with the assumption that the 

elastic displacements are sufficiently small that second-order terms are 

negligible, leads to 

L/2 
_ fi,x - /-L,2 (TRF l i + +C) dx - MCg + Fxc = 0 

. . L/2 
- Mc(i; t 2eX t -ix) - j-L,2 FRF l 3 dx + Fyc = 0 (5.4) 

. . L/2 L/2 
_ 0 I-L,2 mCx2 dx - /-L/2 (FRF ' 3) x dx ' yFXC - XFyc + Fsc = 0 

which establishes the rigid-body motion of the missile in terms of the 

coordinates X(t), Y(t), and e(t). 

For no engine gimbal angle 

L/2 
I -L/2 'RF l Tdx=O (5.5) 

which implies that there is no transverse component due to fluid flow. 

Furthermore, in order to concentrate on the equivalent of the free vibra- 

tion case, the nonconservative external forces are ignored, or 

Fxc = Fyc = Fee = iJuc = i 
YC 

= 0 (5.6) 

so that the last two of Eqs. (5.4) are identically satisfied by 

Y=e=O (5.7) 

and the first one yields the axial acceleration 

jiLS-lJ L/2 . 
MC -L/2 (T RF l it mcvc) dx (5.8) 
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5.2 Elastic Motion 

In view of the assumptions and results of the preceding section, the 

equations for the axial and transverse elastic motions become, respectively, 

& (EAT -$$ " 
. 

+ mCu .= +Q - 7 l 7 _ m v 

RF cc - mC9 = f(x,t) (5.91 

and 

a2 (EI -$) - & (P g) + rn$ = 0 
2 ax 

where the axial force, P, is given by 

(5.10) 

P = EAC $ (5.11) 

In addition, Eq. (5.9) is subject to the boundary conditions as ex- 

pressed in Eq. (3.39) and Eq. (5.10) is subject to boundary conditions 

(3.40) and (3.41). 

Whereas neither the differential equation nor the boundary condi- 

tions for the axial elastic displacement u(x,t) contains the transverse 

elastic displacement y(x,t), an examination of the differential equation 

and boundary conditions for y(x,t) indicates that both contain u(x,t) as 

is seen from Eq. (5.11). A solution for u(x,t) must, therefore, be ob- 

tained prior to the solution for y(x,t). 

A solution of Eq. (5.9) is assumed in the form of a series 

u(x,t) = F 4-i ('1 9-i Ct) (5.12) 
i=l 

where qi(t) are time-dependent generalized coordinates and e,(x) are the 

solutions of the eigenvalue problem consisting of the differential equation 

-~(EA&) = mow24 (5.13) 

together with the boundary conditions 



EAC dx 
2!!L 0, x = -L/2, L/2 (5.14) 

This eigenvalue problem corresponds to the axial vibration problem of a 

rod of uniform mass per unit length mo. Furthermore, the functions 4i 

are such that jL{F2 m, I$~ c)~ dx = "ij where &ij is the Kronecker delta, 

L/2 and in addition l-L,2 m, @i dx = 0. The latter expression is consistent 

with the zero average elastic motion postulated in the preceding section. 

In this case, m, is taken as the initial mass per unit length of the mis- 

sile and, hence, independent of x. From the assumption of uniform burning 

introduced in Section IV, the distributed mass at any time is 

me(t) = m. - met = m. (1 - f3t) (5.15) 
. 

where 8 = mC/mo. 

If Eq. (5.12) and (5.15) are introduced into Eq. (5.9), the result is 

y m, r(I - Bt) Fi + wi2 qd $i = f (x,t) 
i=l 

(5.16) 

where utilization has been made of Eq. (5.13). If the above expression is 

multiplied by +j and integrated over the length of the missile, a set of 

uncoupled ordinary differential equations is obtained in the form of 

(1 - 8t) ii + wi2 qi = Vi(t), (i = 1, 2, ---, n) (5.17) 

where 

u-2 
‘ilt) = / f(x,t) $i(x) dx, (i = 1, 2, ---, n) (5.18) 

-L/2 

are the generalized forces and contain terms due to the internal fluid re- 

active forces. As a result of the relatively rapid transition to a steady- 

state situation of constant burning (see Fig. 4.1), the time dependency of 

Ui(t) is assumed as a step function for the duration of powered flight. 
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A substitution of variables in the form of 1 - et. = T' in the homo- 

geneous part of Eq. (5.17) yields a Bessel equation of the type 

T-- (5.19) 

where 
2w. 

Ai =$- 

Eq. (5.19) has the solution 

(5.20) 

4jtt) = ‘]i T J,(y) + C2i IT Yl(hiTl (5.21) 

where Jl and YI are Bessel functions of the first order and first and second 

kind, respectively. A resubstitution of variables results in the solution 

of Eq. (5.17) in the form 

qi(t) = (1 - 8t)L, J1 (aide + C2i Y1 

(i = 1, 2, ---, n) (5.22) 

where Ui is the amplitude of Ui(t) and Cli and C2i are constants of inte- 

gration that are determined from the initial conditions. If the intial 

conditions are assumed as 

u(x,t) au(x,t) = uow, at = 0 (5.23) 

t=o t=o 

the solution for the axial elastic displacement reduces to 

- Jo(xi) Y1(“i&at) + Ui/wi2 4-i lx) (5.24) 
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where 

I 
L/2 
-L/2 

m. uo(x) $i (x) dx = uoi, (i=l,2,---,n) (5.25) 

Since Ai"l, asymptotic expansions for Bessel functions of large 

argument are possible in the form of24 

J, (Xjz) ‘L, T ‘-c (A .z)cos ci - 
en J 

En(xjz)sin a! 

and 
-I 

Yn(AjZ) QJ m 
J 

!c (A-Z) sin a - 5 (X.Z) cos a 
1.” J n J 

where 

c,,&d 1L 1 - J 
(4t-$l)(;y2;3') + . . . 

. 
( j) 

and 

If the above expressions are introduced into Eq. (5.24) the result is 

u(x,t) = ; I -(‘oi - $(l-Bt)+ cos xi(l-Jrm + $1 4i(‘) (5.26) 
i=l w i w . 

1 

where the square bracket is identified as qi(t). 

Now we are in the position to attempt a solution for the motion 

y(x,t) - As in the case of the axial motion, the transverse elastic dis- 

placement is assumed in the form of a series 

y(x,t> = jil laij(‘) nj(“) (5.27) 

24 N. W. McLachlan, pp. 81-82 
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where the Ilj(t) 

and the Jlj(X)‘S 

eigenvalue prob 

d2 

's are once again time-dependent generalized coordinates, 

are eigenfunctions obtained from the solution of the 

lem defined by the differential equation 

(5.28) 

and the boundary conditions 

EI @!! = 0 and d (EI d2Jl) = 0 
dx2 dx dx2 ' 

x = -L/2, L/2 (5.29) 

The eigenfunctions IJJ~ are such that 
L/2 

I 
L/2 m 
-L/2 O 

$i Jlj dx = 6ii jL'2 m $. 
b 9 -L/2 O J 

dx = 0 and 1 
-L/2 

mox $jdX = 0, 

where once again, the latter two expressions justify some of the simpli- 

fications obtained in the equations for the rigid-body motion in Section 

5.1. 

Equations (5.11), (5.12), and (5.27) are introduced into Eq.(5.10) 

which yields 

i 
j=l 

d+i % 
;j ' "2j"i $j -i=l j=l qi z (EAc dx dx )nj i i. d = 0 

(5.30) 

Iwhere Eq. (5.28) has been used. If Eq. (5.30) is multiplied by $r and 

integrated over the length of the missile we obtain a set of ordinary 

differential equations of the form 

(l-f3t) ;r + $2 llr - iI, jI, 'ijrtt) 'j = O (5.31) 

_- ..- _... ._ 



where 

Pijr(t) F 

In view of the 

Pijr(t) = 

Unfortunately, unlike the set of equations for the axial motion, the set 

L/2 
/ (5.32) 

-L/2 
qi(t) +,(x) & (EAC $2) dx 

boundary conditions (5.14), Eq. (5.32) reduces to 

L/2 
-qitt) 1 

d+i d+j dQr 
EAC dx dx dx dx (5.33) 

-L/2 

of equations (5.31), for the transverse motion, are coupled due to the pre- 

sence of the axial force, P. However, by retaining a limited number of 

terms in the expansions (5.12) and (5.27), Eqs.(5.31) become uncoupled. 

It is observed, for instance, that when the integrand in Eq. (5.33) is an 

odd function, the resultant integral is zero. But $i is an odd function 

if i is odd and JI, is an even function if r is even and vice versa. In 

addition, @i and $r are such that if they are even functions their deri- 

vatives are odd functions, and vice versa, so that 

.L/2 
PlllO) = -ql(t) / 

d$ 1 dJ'l i2 

-L/2 EAC dx dx. dx = -Q,,, q,(t) 

P112(t) = p12+t) = 0 (5.34) 

L/2 
P122(t) = -qp / d% 

-L/2 EAC dx 
dQ21 2 

L x-1 dx = -Q122 qI(t) 

If only the first term in the series (5.12), together with the first two 

terms in the series (5.27) are retained, Eqs. (5.31) reduce to the un- 

coupled equations 

(1 - Bt) ;l + “;nl - Q,,, ql(t) n1 = 0 

(1 - i-1 i2 + n;n2 - Q,,, q+t) u2 = 0 

(5.35) 
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A solution to the typical equation 

(I-8t) ;; + n211 - (!f Qktk) Tl=o 
k=O 

is obtained by the method of Frobenius and has the form 

n= f 
n=O 

Bntn+S 

(5.36) 

(5.37) 

so that 

T 'n( n t s)(n + s - 1)t" + ' -2- 
n=O 

8 T B,(n + s)(n + s - l)p + s - l 
n=O 

+ (i-22 - Q,) ,jo B,t" + ' + ' - Q2 y B,t" + ' + 2 --- = 0 
n=O 

which can be written as 

nio B,,(i + s)(n + s - 1) tn + ’ - 2 - B y BnB1(n + s - l)(n + s - 2) 
nts-2 

n=l 

+ (i-22 - Q,) Y B,-2t" ' ' - 2 - Ql n13 Bn-3t 
n+s-2 

n=2 

- Q2 j4 Bn_4tn + ' - 2 - --- = 0 

The above equation is satisfied if 

B. s(s-1) = 0 

B1 (s + 2) s - BBO s(s - 1) = 0 

B2 (s t 2)(s t 1) - fiB1(s + 1) s + BO(n2 - Qo) = 0 (5.38) 

B3 (s + 3)(s + 2) - BB~(s + 2)(s + l)+ B#I~ - Q,) - BoQl = 0 

B4(s + 4)(s t 3) - BB3(s + 3)(s + 2) + B2(fi2 - QO) - BlQl - 8042 = 0 

etc. 

A solution is obtained by setting s = 0, where B. and B1 remain arbi- 

trary, so that from Eq. (5.38) are obtained all the coefficients 

Bn , n ) 2, in terms of B. and Bl, where the latter are the constants of 
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integration. For s = 0, Eqs. (5.38) assume .tne form of the recurrence 

formula 

Bn=BqBnl- 
n2 - Q. 
n(n - 1) ' i$biJ kIl QkBn-2-k 9 nL2 (5.39) 

and B, = 0 for n negative. 

Equation (5.39) yields 

B2 = - % (Q2-Qo)Bo 

B3 = $ 
1-y 

.-, 
-~(a~-Qo) + Q, B. - $ (9-Q0)B1 

- 

B4 = $ -82(n2-QO) + 4 (n2-Qo)2 + 8Q1 + Q2-j B. 

1 I’ 
I 

+ J-J- +tn2-Qo) + Ql B1 (5.40) 

B5 = & 
il 

-1 
-(83+Ql)(Q2-Qo) t $ (n2-Q0)2 + 82Q1 + BQ, t Q, B. 

._ 
1 r 

+ 20 L-82(n2-Q0) t ; (n2-Qo12 + 8Q1 + Q2 ; B1 

SO that the introduction of the above coefficients it& Eq. (5.37) results 

in 

n = F 
n=O 

B,t" = B. + Bit. - ; (n2-Q,) BOt2 + {- ’ ‘-8b2-Qo) + 6L 

- $ (n2-Q,) BlI t3 + {-$. / - B~(Q~-Q~) + + W-Q0)2 + BQ~ + Q2y~o 

t $ 1. I-B(Q~-Q~) + Ql; Bljt4 + h +3+Ql)(n2-Qo) 
L 

+ $ (~~-9~)~ 

' B2Q1 + BQ2 + 43 
1- I 

Bo + $J - 8(n2-Qo) t k (n2-Qo)+ BQ1 tt Q2 1 B1} t5 t ---- 

= BOU - ; b2-Qo)t2 + ; p1 -8(n2-QO)t3 + $ Q2+8Q1 (5.41) 

+ $ (a2-Q,) - B2(a2-QO) 1 t4 + & 1 il,+89, +82Q1 + $ (~~-4~)~ 

- (83+Ql)(n2-Qo)] t5 + -----w-w-) 

+ Bl It - ; (a2-Qo)t3 t b LQ1-8 b2-Po)] t4 + b [Q2+8Ql 

+ ; ($-Q0)2 _ -7 5 
82(a2-QO)j t + -_-___-__ ] 
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Hence, the solution of Eqs. (5.35) assumes the simplified form 

n-j(t) = Boj noj(t) + Blj Ill-j(t), (j = W (5.42) 

where 

noj(t) = 1 - $ (“5 - Q0)t2 t + p1 - B(L’; - Qoyst --- 
(5.43) 

nlj(t) = t - ~ (ng - Qo)t3 + X ~I - 8(~5 - Qo)] t4 t --- 

and Boj and BIj, (j = 1,2), are constants of integration which are deter- 

mined from the initial conditions. Finally, introduction of Eq,. (5.42) 

into Eq. (5.27) yields the expression for the transverse elastic motion 

Y(X,t) = jI, Jlj(X) ~oj noj(t) + B lj yjw 
J 

(5.44) 

If y(x,o) and y (x,0) are the initial transverse displacement and velocity, 

respectively, the constants of integration are 

L/2 

‘Oj = -L,2 I m. #j(x) ~(0) dx 

L/2 
'lj =/ 

-L/2 
m. ~l~(x) &,O) dx 

(5.45) 

It is apparent that, for no external forces, y(x,t) is zero if the 

initial conditions are zero or if they are proportional to either $J~(x) 

or X~j(X) for j > 2. 

5. 3 Results 

The equation for the axial elastic motion 

U(X,t> = z ~j(X) 
r 

(1-8t)1’4(Uoj 
U 

j=l 
- $) cos 2wj (1-m) + 4 

w. 8 
J W. 1 (5.46) 

J 

is not particularly amenable to numerical calculation because of the ex- 

tremely large argument of the cosine term. However, for small time t, the 

radical in the above expression may be expanded by means of the binomial 
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expansion formula to give 

cos 3 
I 
I- (1 - F + bi$f- . . .j 

1 
= cos T (F _ hi&k . ..I 

(5.47) 

For t CC 1, the (Bt)L term as well as all higher order terms in t may be 

neglected. In addition 

(1 -. 8t)1'4 = 1 (.5.48) 

so that a simplified expression for u(x,t) appears as 

u(x,t) z E 4.(x) 
j=l J 

y+ (UOj 
Wj2 

- S) cos 
w. 

ujt 
J 1 (5.49) 

Although this form has definite utility for the calculation of the axial 

displacement for very small t, it neglects the change in the frequency 

and amplitude of vibration as a function of time due to the change in 

the mass. However, since the axial displacement u(x,t> is necessary for 

the calculation of y(x,t), its evaluation is required for the entire 

period of powered flight. 

For this reason, Eq. (5.47) has been programed for soluticn by means 

of a digital computer. Input to the program requires values of Young's 

modulus, length and area of the missile case, area of the fluid, nozzle 

throat area, and internal fluid pressure, together with the mass per unit 

length and the time rate of change of the mass per unit length of the mis- 

sile, The number of terms in the series is also read in as input in order 

to be able to evaluate the rate of convergence of the series. The output 

consists of values of the axial elastic displacement at discrete intervals 

of x for discrete values of time from time = 0 to burnout. The time in- 

crement is determined from the relation 

h 
T = c (5.50) 
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where h is the spatial increment.and 

c=m& (.5.51) 

so that a sufficiently large number of deflected shapes are obtained over 

a cycle to ensure representative coverage. Results for 1, 2, 10, and 20 

term series have been obtained for a typical solid-fuel missile with the 

following physical properties: 

E 

AC 

AF 

AT 

mo 
. 

mC 

L 

= 30 - lo6 lb per sq in. 

= 7.53 sq in. 

= 36.4 sq in. 

= 18.2 sq in. 

= 0.011 lb-sec2 per sq in. 

= 0.004 lb-set per sq in. 

= 100 in. 

PL/2 
= 2,000 lb per sq in. 

For nine increments of length, a time increment of approximately 

0.0000775 second results for the above set of parameters. As an indica- 

tion of the rate of convergence of the series, a comparison of the de- 

flected shape for different numbers of terms at a typical time appears in 

Fig. 5.2. Fig. 5.3 shows the missile at several selected times throughout 

the first cycle, while deformations at equivalent times throughout the 

40th cycle are depicted in Fig. 5.4. The change in the period of vibra- 

tion as well as in the amplitudes at various times during the cycles is 

evidenced by a comparison of the latter two figures. 

It should be stressed that, while the eigenfunctions of a constant 

mass system are used, this is merely a mathematical convenience and does 

not imply normal mode vibration. On the contrary, the system does not 
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possess any natural frequencies in the ordinary sense, and the amplitudes 

are not constant at a given period in different cycles. 
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VI. NUMERICAL SOLUTION FOR PLANAR MOTION 

6.1 Equations of Motion in Difference Form 

To obtain a thorough understanding of the dynamic characteristics 

of a slender body of time-dependent mass under high accelerations, it is 

desirable to secure an analytical solution, even under certain limiting 

conditions. As indicated in the previous section, these conditions re- 

quire assumptions concerning the relative magnitudes of the generalized 

coordinates. 

To justify these assumptions, it is necessary to investigate the com- 

plete set of five coupled nonlinear equations of motion by means of a nu- 

merical method together with a high-speed digital computer. Once again, 

the missile is envisioned as a uniform, circular cylinder of time-dependent 

mass, closed at one end, but open through a nozzle at the other. The mass 

variation along the centroidal axis is assumed to be constant and of con- 

stant magnitude from ignition until burnout. As in the pre- 

vious section, the internal fluid is considered to be nonviscous and of 

constant pressure within the combustion chamber such that a linear velocity 

distribution results from the closed end to the entrance of the nozzle. 

External pressure, as well as nonconservative external forces, is assumed 

negligible, and gravity is once more assumed constant such that with the 

exception of the limitation concerning the relative magnitudes of the co- 

ordinates, all conditions are identical with those of Section V. 

The equations of motion are written in finite difference form, and 

boundary and starting values for all variables are calculated fr.om the 

corresponding boundary and initial conditions of the differential equa- 

tions of motion. Central difference expressions are utilized throughout 

the analysis with the exception of certain terms involving e2, where a 



backward (left-slanted) difference is used to avoid a quadratic recur- 

rence relation for 8. Numerical integration is used to evaluate the 

integrals occurring in Eqs. (3.34) through (3.36). 

An iterative sequence is necessary to cope with the nonlinearity of 

the equations. Since the elastic displacement in the axial direction is 

needed for the calculation of y(x,t), and since for most physical systems, 

the value of u(x,t) will be the most rapidly varying parameter, it is 

first calculated at the new time, t + At, by assuming that the values of 

the other variables are unchanged from time t. Values of the elastic dis- 

placement in the transverse direction are then computed by using the 

values of u(x, t + At), but once again with the use of the values of the 

rigid-body terms at time t. In a similar manner, values of X, Y, and e 

are calculated for time t + At. Refined values of the axial elastic dis- 

placement are then obtained with use of the new values of the remaining 

variables just computed, and the process is repeated until the desired 

accuracy is obtained. Since the magnitude of the time increment is quite 

small (approximately 10 -4 seconds) for most physical systems, the rigid- 

body terms do not vary significantly over this increment, and a relatively 

low number of iterations are required. 

Also, in addition to the assumptions already stated, the following 

initial conditions are assumed: 

X(0) = Y(0) = i(0) = ‘i(O) = i(O) = 0 

u(x,O) = &x,0) = y(x,O) = &x,0) = 0 
(6.1) 

and e(0) = any value between 0 and 2a. 
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Equation (3.34) is written as 

a%(x, t) 
ax2 

- i2(X + x t u) 1 + 5 g sin 0 t k (TRF ’ i + lilcVc- iuc) (6.2) C C 

where 

If any viscous or drag forces are once again neglected, Eq. (6.2) 

for a typical element other than the end elements is written in finite 

difference form by utilizing such simple central difference expressions 

as 

3 ('i+l,j - 2uij + 'i-l,j) = & ('i 
, 
j+l - 2uij + 'i,j-1) 

+& [ 'j+l - 2Xj t Xjml - (ejtl- 2ej tejWl)(Yj t yij) 

- i (ej+l - ej-l)(Yj+l - yj-l + y-i ,j+l - 'i ,j-1) - + (ej+l - ej-112 a 

(Xj + ih t uij) 1 
t $ g sin ej 

CL 
(6.3) 

where h is the spatial increment and -c = At is the time increment. A 

recurrence relation for u is immediately apparent for time t + T from the 

above expression. 

u- C2T2 
l,j+l =-Ui , j-1 + 2(1 - - h2 ) 'ij 

+ C2T2 
7 ('itl,j + 'i-l,j) 
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I'- 

- yj+l - 2xj + x j-1 - (Bj+l - 2ej + ejmlHYj + Yij) 

- $ (ej+l - ej-l)(Yj+l - yj-l + Yi,j+l - Yi,j-1) - + (ej+l - Bj-1J2 l 

(Xj + ih + uij) - r2g sin e. 
II J 

(6.4) 

From the initial condition equation (6 &l.), au(w) at = 0, which in dif- 

ference form is 

& l”i,l - ui ,-I) = O (6.5) 

so that the starting values for u are simply 

‘i,l = ‘i,-1 (6.6) 

Since the internal pressure exerts an axial force only on the two ends, 

it may be treated as a nonhomogeneous boundary condition rather than a 

spatial Dirac delta function, 

auW,t) pL/2AF 
ax =Tq- 

or, in difference form 

U 
n+l,j 

- u = 
n-1,j 

2 h"\/2AF 

EAC 

At the nozzle end, a linear drop 

au(-L/29t) 2 _ o 236 . 
ax 

i n pressure is assumed so that 

or 

‘l,j - ‘-1,j 

such as X j+l’ 
Y jtl' 'jtl' 

not 

lation for Ui jtl, Eq,. (6.4), many values 
, 

and y 
i,j+l 

are required for time t + T which are 

at this stage of the calculation. Consequently, immediately available 

In the recurrence re 

P&c( 1 -AT/+) 
EA, 

(6.7) 

= -0.472 
"PL,2A~ ( ~-AT/+) 

EAC 
(6.f3) 

it is necessary to adopt an iterative procedure by using for such values 
. . . 

as X, e, etc., which are not available at t + +, the value existing for time t. 
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The equation for the elastic transverse motion, Eq. (3.38), 

appears in difference form as 

~~(Yit2.j - 4Yi+l,j + 6Yij - 4yi-l,j + Yi-2 j) 
, + L (Yi ,j+l 

.2f34 

- 2Yij + Yi,j-1 ) = & [('itl,j - "ij + ui-l,j)(Yi+l j 3 - yi-l,j) 

+ (u. l+l,j - ui-l,j)(Yi+l,j - Sij + Yi-l,j )] - - ['j-l-l A4 
- 2Yj -I- Yjml 

+ (0 jtl - 2ej + e j-l)('j + ih + uij) t i (ejtl - e j-l)(xj+l - 'j-1 

+ u. i,j+l - 'i,j-l) - $ bjtl - ej-1)2 (Yj + Yij) - r g COS ej 1 B4 
PAF 

- v ('j+l - ej-l) 'ij (6.9) 

where B 4 = EI/F. The recurrence relation for y(x,ttT) is then 

.284 = - (-y. 
yi,jtl h4 1+2,j + 4y. itl,j + 4y. I-1,j - Yi-2,j) + 2(1 - 9) Yij 

- yi,j-l + - 2uij - ui-l,j)(Yi+l j - Yi 1 j) , - 9 

+ (u. i+l,j - ui-l,j)(Yi+l,j - 5ij + Yi-l,j - 2yj + 'j-1 

+ ('jtl - 2ej + e j+l)('j tihtu ij) + + tej+l -ej-l)(Xj+l 

- ‘j-1 + ‘i , j+l - ‘i j 1) - + (ej,l - ej-112 (‘j + Yij) , - 7 

+ T2g cos e 
TPAF 

t - (0 j sy 3-l - ej-l 1 v ij (6.10) 

Once again, from the initial condition for the transverse elastic motion, 

+p- = & (yi 1 - yi,.& = 0 
, 

the simple starting difference relation results 

yi,l = yi,-l (6.11) 
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In addition to the initial condition described above, Eq. (6.10) is subject 

to the boundary conditions, Eqs. (3.40) and (3.41.). From Eq. (3.40) at 

x = -L/2 

EI a2y(-L/2s t) 
ax2 

= 7 (Yl,j - 2YOj + Y-l,j) = O 

or 

y-l,j = 2YOj - Yl,j 

Also, since P = EAC 3, Equation (3.41) for x = -L/2 yields 

(6.12) 

EAC 
- 2 (u l,j - '-l,j)(Yl,j - Y-l,j) + 2 (-Y2,j + S,,j - 2Y_l,j + Y-2,j) 

=0 

or 

y-2, j = y2,j 
hAC 

- 'Yl,j - 2Y-l,j + 21 ('l,j - '-l,j)(Yl,j - Y-l,j) (6a13) 

Similarly, at the closed end, x = L/2, Eq. (3.40) results in 

EI a2y( L/&t) - EI 

ax2 
- 7 (Yn+l,j - 2Ynj + Yn-l,j) = O 

or 

yntl, j = 2Ynj - yn-l,j 

whereas Eq. (3.41) yields 

(6.14) 

EAC -- (u 4h2 n+l,j - Un-l,j)(Yn+l,j - Yn-l,j) + 3 (-ynt2,j + 2yntl,j - 

2Y n-1,j +Y n-z,j)= O 

or 

hAC 
ynt2,j = yn-2,j - 2Y ntl, j +2Y -&u ntl, j n+l,j - Un-l,j)(Yntl,j - Yn-l,j) 

(6.15) 

Once again, whereas the values of the elastic displacement in the axial 

direction are know, the rigid-body quantities Xjtl, Yjtl, and ejtl appearing 



in Eq. (6.10) are still unknown. Consequently, values of X, e, etc. must 

be assumed to remain unchanged from time t to time t t T in the initial 

calculation of the lateral elastic displacement. 

Before proceeding to the difference equations for the rigid-body 

terms, it is necessary to devote some attention to the size of the time 

and space increments, T and h, in order to insure numerical stability of 

the difference equations corresponding to the partial differential equa- 

tions (3.37) and (3.38). The value of h is determined from 

h = L/n (6.16) 

where n is the number of stations required to yield adequate information 

as to the deflected shape in both the axial and the lateral direction. 

For stability of the homogeneous wave equation, the time increment is 

then 

T 2 2 h2,c2 (6.17) 

Stability of the homogeneous beam equation in difference form, on 

the other hand, requires that 

T 2 2 h4/4B4 (6.18) 

Obviously, with the exception of certain isolated combinations of physi- 

cal parameters, the values of T determined from Eqs. (6.17) and (6.18) 

are not equal, although for most systems of interest, they are of the 

same order of magnitude. Therefore, in order to insure mathematical 

stability, it is necessary to compute two values of T and utilize which- 

ever is smaller. Also, since the mass per unit length of the missile 

varies as a function of time, the time mesh size varies slightly from 

one time to the next. 

To determine the difference relations for the rigid-body equation 

of motion, it is necessary to adopt a means of numerical integration, 
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since integrals as well as differentials are involved. Simple trapezoidal 

integration, rather than one of Simpson's methods or even more complex ex- 

pressions, is used so as to preclude the necessity of deciding at the out- 

set to use either an odd or an even number of space increments. 

Equation (3.34) appears in difference form as 

mCnh I- 
2 L(xj+l 

T 
- 2xj + x j-1) + !j (ej+l - ej-l)(Yj+l - 'j-1) 

-Yj (ej+l - 2ej + @j-l) - $ (e jtl - 'j-1 j2- 
n-l mch 

+ c 
- i=. 2 ('i, jtl 

- PUij + 'i,j-1 + ‘i+l,j+l - 2u. itl,j + ‘i+l,j-1 1 - 5 (ej+l - 2ej + ejml) l 

+ J’i+l,j+l - Yi+l,j-1) + g mCnh sin ej - pLAF ij -0.236(1-AT,AF); (6.19) 
-I 

which yields the recurrence relation for the rigid-body translation in 

the X-direction. 

‘ji-1 =2x -x 
j j-l - $ejtl - ej-lHYj+l - Yjml) + 'j tejtl - 2e. +e ) 

J j-l 

X. 
+ + (e 

2 1 n-1 
jtl - ej-l ) 2n iio ('i,j+l - 2uij + ‘i,j-1 + ‘itl,jtl - 2ui+l,j 

+ uitl,j-l > + & (ej+l - 2ej + ej-1) fii (Yij + Yitl,j) 

+& (e - ej 1)2 nf1 1(2i t l)tl + Uij + ui+l,j: 
jtl - i=O -- 

n-l 
+ 1 (e 

4n j+l - ej-1) i:. (yi ,j+l - yi ,j-1 + yitl,j+l - yitl,j-l) 
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- =*g sin e 
T2 PL AF T 1 

+ j mCn h 1 
. - 0.236 (1-- AT/A,); 

From the initial condition 

'('1 = $ (‘j+l - ‘j-1) 

results the starting difference relation 

x1 = x-1 

(6.20) 

(6.21) 

Similarly, Eq. (3.35) appears in difference form as 

- 2yj + 'j-1) + i (ej+l - eJ-l)CXj,l - ‘j-1) 

+ Xj (e. - 2ej + ej-1) - 4 ‘j(e 
n-l mch 

Jtl + 1 -7 (Yi j+l 
i=O 2-r ’ 

- 2Yij + Yi j 1 + Y' 
, - itl, jtl - 2Yi+l j + Yi+l,j-1) + 5 lejtl - 2ej 3 T 

n-l mCh I- 
t ej-1) 1 2 ; ih + uij + (itl) h t uitl,j.l 

i=O L-d .A 

+ ‘itl,jtl - ‘itl, j-l ) + g mCnh cos e. - 
3 ( ‘jtl 

PAFh 
- ej-ll F ’ 

:I~ (‘i j + ‘i+l,j) = O 
(6.22) 

which yields the recurrence relation for the Y direction 

Y jtl = 2Yj - YjBl - + (ejtl - ejBl)(Xjtl - XjB1) - Xj(ejtl - 2ej + ejml) 

Y. 
+ + (e. 

Jtl - 'j-1 I2 - & yii (Yi,j+l - 'Yij +Yi,j-1 + yitl,jtl - 2yitl,j 

+ yitl,j-l 1 - & (ej+l - 2ej + 8jll) :C:, 1(2i+l) I1 + Uij + Uitl j 
, 
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1 n-l . 
+ 8n (ej+l - ej,l I2 

Jo (yij + Yi+l,j) - &i (ej+l - ej-l) l 

yii (‘i,j+l - ‘i,j-1 + ‘i+l,j+l - ‘i+l,j-1) - T2 g ‘OS ej + &i l 

(ejtl (6.23) 

and once again, from the initial condition 

i(0) = $$Yjtl - Yjel) = 0 

the starting difference relation is obtained 

y1 = y-1 (6.24) 

Finally, Eq, (3.363 is written in difference form as 

I 

;j(ej+l - 2ej + ej-1) + xj (Bj - eje1j2 - (Xjtl - 2Xj + Xjml) 

t$ (e jtl - ej-l)(Yjtl -"j-l i=. I] ni1 y (Yij + Yi+l,j) '!xj (ejtl 

- 2ej + ej-1) - Y .(e. - ejm1J2 t (Yjtl - 
J J 2yj + 'j-1) + i (ejtl - ejBl) l 

('j-+1 - 'j-1 ) 

- 2Yij + Yi,j-l)(ih + 'ij) + bi+l,j+l - 2Yi+l,j + Yi+l,j-1) l 

ni1 ~~("i,jtl - 2uij + 'i,j-1) Yij + (‘i+l,j+l 
i=O 

- 2u itl,j 
t ui+l,j-l) + (ejtl - 2ej + ej-1) yii T{(ih + Uij)’ ’ 
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2 
h + u. ltl, j 1 t y?. + y2 

1J itl,j 
t(.e. -e 

Jtl 

‘i j)t”’ i.j+l - Ui,j-l) + [(l+l) h + U* 1+1, j ] (Ui+l,j+l - Ui+l,j-1) + 

yi j (yi ,jtl - yi ,j-1) + yitl,j (yitl jtl - yitl j-l , , 
)]+ ;i; F T2g{[1:h t 

uij + (itl) h t u. i+l,j 1 
cos 8 j - (Yij + Yi+l,jJ sin ej t T~PLA~ [I - 

0.236 (1 - AT/AF) 
1 

WA 
yii k (Yij ’ Yi+l,j) ’ $ 

‘i+l,j) = O (6.25) 

which results in the somewhat involved recurrence relation 

‘jtl = Yj (-2ej + ejsl) + Xj (ej - ejm1J2 - kjtl - 2Xj + Xjsl) - 

ej-l) 
2 

+ (Y j+l - 2YjtY.-) lf3 - 2 j-l ('j+l - ’ j-1) 

u.. 
1J + Ui+l,j] - 31: :1/1:jIl - 2Yij + Yi,j-l)(ih + 

2Y. itl, j + yitl,j-l)(“itl, j - (itl) h)] t yii icui 
, 
jtl - 2uij t 

'i, j-l) yij + ('itl,jt1 - 2uitl,j + ui+l,j-l) Yi+l,j 
1 

_ 

n-l 
(-20-j + ej-1) Jo 

C 
(ih t uij)2 t ~i+l,j t (itl) h 2 + yTj, 
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2 1 

I 

n-l I‘ 
+ Y* 1+1, j + 2 'j-1 iI, itih + 'ij)('i,j+l - ‘i,j-1) + ‘itl,j 

+ (i+l) h)(u itl, jtl - 'itl,j-l) + Yij (Yi,jtl - Yi,j-l) + Yitl,j(yitl,jtl 

- yitl,j-l)_ - big 7:: i-(lJij + Uitl,j + (*itI) h) COS ej - (yij 

- -, n- 

+ yi+l,j ) sin 0. 
T*~~A~ :- 

J- - mCgjl - 0.236 (1 - AT/AF) j -l 
_ i!. (yij 

n-l 
C 

n-l 1 

i=O 
(Yij + Yi+l,j) + i (Xj+l + *Xj - Xj-1) Jo !(*i+l) h + Uij 

t ui+l,i' t yii :(ih t uij)* t >i+l,j t (itl) c2 t yi5 t yitl,il 
.- - 

+- : n,f1 [(ih + Uij)(Ui,j+l - Ui,j-1) + ~~i+l,j + (i+l) h] (Ui+l,j 
i=O 

- 'i+l,j+l )tYij(Yi,j+l-yi,j-l) + yi+l,j (yitll,j+l - yitl,j-l ! 1-i 

‘c P AF n-l 

+ - Jo ('ij + 'itl,j) } mCg 

As with the other rigid-body terms, the initial condition 

results in the starting relation for 8 

01 = e-1 
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,.. . 

(6.26) 



In view of the length and complexity of the above equations of motion, 

a computer solution is obviously required, especially when the necessity of 

a number of iterations for each time increment is considered. Therefore, 

the recurrence relations, together with the necessary starting relations, 

have been programed for the Control Data 3400 digital computer. At a typi- 

cal time, the value of the elastic axial displacement is first calculated 

by using values for the rigid-body coordinates, velocities, and accelera- 

tions. Next, the lateral elastic displacement is computed by using the 

new value of the axial elastic displacement just obtained, but once again 

using existing values for the rigid-body terms. Subsequently, new values 

for X, Y, and e at t t 'I are calculated, in that order, by using new values 

of all available variables, but existing values of any terms not yet com- 

puted. A new value of the elastic axial displacement is then calculated 

by utilizing the new values for the remaining variables, and the process 

is repeated until the desired accuracy is obtained. Output consisting of 

the time, t, together with the rigid-body terms X, Y, and 8, and the 

elastic displacement u(x) and y(x) is then printed. New values of the 

fluid flow area, case mass per unit length, and time increment are then 

computed and the calculation is repeated continuously until burnout. 

6.2 Results 

Although no stipulation as to the relative magnitudes of the values 

of the generalized coordinates was made for the numerical solution, the 

only rigid-body motion of consequence noted was the linear translation in 

the X-direction. Only a very slight drift in the value of Y (less than 10m7 

times the value of X) was observed for vertical flight. Also, the value 

of 8 remained constant to the number of decimal places printed in the output 
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motion for all'cases run. Thus, the assumptions concerning the rigid-body 

used in the perturbation solution appear justified. The linear rig 

displacement for one case is plotted as a function of time in Fig. 

id-body 

6.1, 

where, for comparative purposes, the displacement of a constant-mass missile 

of constant thrust is also shown. 

fin i 

Fig . 

A comparison of the axial elastic displacements obtained by the 

te-difference method and the series solution with 20 terms is shown in 

6.2 for a typical time during the first cycle of oscillation, Excel- 

lent correlation is observed, and the slight variation could undoubtedly be 

further decreased by the use of additional terms in the series. Deviation 

of the two solutions increases somewhat with time, however, and a comparison 

of the displacements obtained at approximately the same time during the 40th 

cycle is shown in Fig. 6.3. The actual time at which the indicated displace- 

ment occurs is slightly (0.275 per cent) different for the two methods, which 

is attributed to error accumulation in the finite-difference solution over 

the 720 time increments. Additional axial deformations during the 40th cycle 

are presented in Fig. 6.4. 
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Further substantiation of the analytical solution was indicated by 

the lack of any lateral deformation. Test cases included those where the 

ratio of the initial periods of lateral and axial vibration was unity, as 

well as 2:1, 3:1, 4:1, and 0.5:1. 

In order to investigate the effect of a variable axial strain on 

the lateral vibration characteristics of a solid-fuel missile, an example 

with an initial lateral deformation was obtained. These results appear in 

Fig. 6.5 and 6.6. Although, for the internal pressure used, the effect on 

the lateral vibration is not especially pronounced, the trends agree with 

SeidelO with the exception that the axial force is variable. The stiffening 

due to the internal pressure also produced a decrease in the intial period 

of vibration of 5.8% compared to the period of a force-free beam of constant 

mass. 

Of final interest, several test cases were run with nonconstant cham- 

ber pressure. For a pressure oscillation frequency close to that of the 

axial vibration of the case, a rapid increase in amplitude was experienced 

which soon exceeded the limitation of small deflection theory. Unfortunately, 

the results were complicated by the appearance of numerical instability such 

that accurate generalizations proved impossible. 

lo P. Seide, p. 20 
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VSI. SUMMARY AND CONCLUSIONS 

The dynamic characteristics of a slender, elastic body of variable 

mass were investigated. The analysis is applicable to a solid-fuel mis- 

sile which was envisioned as a slender, cylindrical body capable of both 

rigid-body motion as well as axial and transverse elastic deformation. 

During the powered flight of the vehicle, the mass was considered as a 

function of time with the products of combustion flowing relative to the 

missile structure and final,ly exhausting through a nozzle to the atmos- 

phere. 

The equations of motion of an element of the case and a fluid ele- 

ment were derived in vector form and then unified into a single equation 

of motion, which was then transformed by means of a variational principle 

into coupled equations of motion in terms of generalized coordinates. 

To determine the effect of the fluid flow on the dynamic characteris- 

tics of the missile, the internal pressure and velocity distributions were 

investigated for a body under high accelerations, with consideration of 

the contribution of terms resulting from fluid flow, friction, and a non- 

inertial control volume. It was shown that the assumption of constant 

chamber pressure, as well as a linear velocity distribution through the 

combustion chamber, was justified. 

A primary motion in the rectilinear direction was then postulated, 

with the remaining rigid-body motions and the elastic deformations treated 

as perturbations. Assuming a uniform mass, although depending on time, a 

solution for the axial vibration was obtained in terms of a series of the 

eigenfunctions of the corresponding constant-mass system multiplied by 

time-dependent generalized coordinates. A set of uncoupled ordinary dif- 

ferential equations for the generalized coordinates resulted, the solutions 
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of which were determined by the initial conditi,ons and th.e forcing functions 

resulting from fluid flow. It is stressed that, although the eigenfunctions 

of a constant-mass missile were used, it did not imply normal mode vibration. 

On the contrary, a variable-mass system does not possess any natural fre- 

quencies in the ordinary sense, and the amplitudes are not constant at times 

corresponding to the same fraction of the changing periods. 

The same series approach to the lateral vibration resulted in coupled 

equations due to the presence of the axial force in the equation for y(x,t). 

In order to uncouple this set of equations, it was necessary to assume that 

the deformation in the axial direction could be approximated by the first 

term of the series for the axial vibration and the first two terms of the 

series for the lateral motion. Of final consequence, it was shown that no 

lateral elastic motion resulted under the assumed initial conditions 

y(x,O) = i(x,O) = 0. 

To verify the solution for the axial deformations obtained by means 

of the perturbation technique , as well as to determine the effect of re- 

laxing the requirement of linear rigid-body translation, a numerical solu- 

tion to the coupled equations of motion was obtained. Excellent correlation 

between the two solutions was observed, especially during the early portion 

of the powered flight. Although no restrictions were imposed on Y(t) and 

e(t) only slight variation was noted in these parameters with time, and it 

was concluded that the jet damping availble from fluid flow was adequate to 

prevent unstable tumbling, even for an elastic body. Also in agreement with 

the perturbation solution, no lateral elastic vibration was excited unless 

an initial lateral deformation or velocity was stipulated, even for cases 

in which the periods of vibration for the lateral and axial motion were the 

same -- 2:1, 3:1, 4:1, and 0.5:1. 
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